Technologies

Disinfection by Chlorine (Water & Wastewater Treatment Plants, CAMIX Vietnam)

 

DESCRIPTION

Chlorine

Chlorine is one of the most commonly used disinfectants for water disinfection. Chlorine can be applied for the deactivation of most microorganisms and it is relatively cheap.

Chlorine as a disinfectant

Chlorine is one of the most widely used disinfectants. It is very applicable and very effective for the deactivation of pathogenic microorganisms. Chlorine can be easily applied, measures and controlled. Is is fairly persistent and relatively cheap.
Chlorine has been used for applications, such as the deactivation of pathogens in drinking water, swimming pool water and wastewater, for the disinfection of household areas and for textile bleaching, for more than two hundred years. When chlorine was discovered we did not now that disease was caused by microorganisms. In the nineteenth century doctors and scientists discovered that many diseases are contagious and that the spread of disease can be prevented by the disinfection of hospital areas. Very soon afterward, we started experimenting with chlorine as a disinfectant. In 1835 doctor and writer Oliver Wendel Holmes advised midwifes to wash their hands in calcium hypochlorite (Ca(ClO)2-4H2O) to prevent a spread of midwifes fever.
However, we only started using disinfectants on a wider scale in the nineteenth century, after Louis Pasteur discovered that microorganisms spread certain diseases.
Chlorine has played an important role in lenghthening the life-expectancy of humans.

How does chlorine disinfection work?

Chlorine kills pathogens such as bacteria and viruses by breaking the chemical bonds in their molecules. Disinfectants that are used for this purpose consist of chlorine compounds which can exchange atoms with other compounds, such as enzymes in bacteria and other cells. When enzymes come in contact with chlorine, one or more of the hydrogen atoms in the molecule are replaced by chlorine. This causes the entire molecule to change shape or fall apart. When enzymes do not function properly, a cell or bacterium will die.

When chlorine is added to water, underchloric acids form:
Cl2 + H2O -> HOCl + H+ + Cl-

Depending on the pH value, underchloric acid partly expires to hypochlorite ions:
Cl2 + 2H2O -> HOCl + H3O + Cl-
HOCl + H2O -> H3O+ + OCl-


This falls apart to chlorine and oxygen atoms:
OCl- -> Cl- + O

Underchloric acid (HOCl, which is electrically neutral) and hypochlorite ions (OCl-, electrically negative) will form free chlorine when bound together. This results in disinfection. Both substances have very distinctive behaviour. Underchloric acid is more reactive and is a stronger disinfectant than hypochlorite. Underchloric acid is split into hydrochloric acid (HCl) and atomair oxygen (O). The oxygen atom is a powerful disinfectant.
The disinfecting properties of chlorine in water are based on the oxidising power of the free oxygen atoms and on chlorine substitution reactions.

The cell wall of pathogenic microorganisms is negatively charged by nature. As such, it can be penetrated by the neutral underchloric acid, rather than by the negatively charged hypochlorite ion. Underchloric acid can penetrate slime layers, cell walls and protective layers of microorganisms and effectively kills pathogens as a result. The microorganisms will either die or suffer from reproductive failure.

The effectivity of disinfection is determined by the pH of the water. disinfection with chlorine will take place optimally when the pH is between 5,5 and 7,5. underchloric acid (HOCl) reacts faster than hypochlorite ions (OCl-); it is 80-100% more effective. The level of underchloric acid will decrease when the pH value is higher. With a pH value of 6 the level of underchloric acid is 80%, whereass the concentration of hypochlorite ions is 20%. When the pH value is 8, this is the other way around.
When the pH value is 7,5, concentrations of underchloric acid and hypochlorite ions are equally high.

 

REFERENCE PHOTOS

 

 

 

9/101644